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Abstract  
The aim of this contribution is to attempt to state a thermodynamic theory for dynamic systems 
modeled by first order differential equation systems. This approach could help us to understand 
better the nature of complexity if a general definition of Entropy can be defined in the context of 
these systems. The way followed is stating a Lagrangian-Hamiltonian approach for them. This 
approach provides a Liouville’s equation from which Entropy can be defined. An amazing result 
arises: for equilibrium distributions, Liouville’s function and Entropy depend on system energy.  
The philosophical conclusion is that a dual deterministic-probabilistic picture of general systems is 
implicit in their nature, i.e., the probabilistic picture would not arise necessarily from a lower level 
of description.  
 
 
Résumé 
L'objectif de cette contribution c’est essayer d’établir d'une théorie thermodynamique pour les 
systèmes dynamiques modélisés par des systèmes d’équations différentielles de premier ordre. Cette 
approche pourrait nous aider à mieux comprendre la nature de la complexité, si une définition 
générale d’Entropie peut être définie dans le contexte de ces systèmes. Le chemin suivi est arranger 
une approche Lagrangienne-Hamiltonienne pour eux. Cette approche fournit une équation de 
Liouville à partir de laquelle l'Entropie peut être définie. Un résultat étonnant devient: pour les 
distributions de l'équilibre, la fonction de Liouville et l'Entropie du système dépendent de l'énergie. 
La conclusion philosophique est que une représentation dual déterministe-probabiliste des systèmes 
généraux est implicite dans leur nature, c'est à dire, la représentation probabiliste ne peut pas 
nécessairement venir d'un niveau inférieur de description. 
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1. Introduction 
One of the aims of General Systems Theory is opening new ways of research to understand better 
complexity. The general systems here considered are dynamic systems modeled by first order 
differential equation systems (FODES, from now onwards). The aim of this contribution is to 
attempt to state a thermodynamic theory for these systems. This approach could help us to 
understand better the nature of complexity if thermodynamic functions or variables such as 
temperature can be defined in the context of these systems. 
 
Take into account that many system methodologies that have been developed ending the 20th 
century and starting the 21th one have contributed with systems modeled by first order differential 
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equations. For instance, Forrester’s methodology (Forrester, 1961, 1970) or Caselles’s methodology 
(Caselles, 1992, 1993, 1994, 1995), contributes with this kind of models. In addition, the chemical 
reaction dynamics can be modeled with a similar manner. Thus, we present here a possible way to 
obtain a thermodynamics for these systems.  
 
The unification here proposed was a central Prigogine’s aim, and he had many contributions 
following this idea. See for instance (Prigogine, George, Henin & Rosenfeld, 1973). The dynamic 
systems considered in his work were physical systems, which are modeled by coupled sets of 
second order differential equations. My hypothesis is that a central problem to relate 
thermodynamics and physical dynamic systems is that thermodynamics has a first order 
mathematical differential structure.   
 
A similar and present work of investigation in this field is Synergetics (Haken, 2004). This work is 
an attempt to unify in a unique theory, thermodynamics, information theory, dynamics and 
randomness, i.e., a serious and rigorous attempt to understand complexity. On the other hand, the 
way followed in this paper is different; it is provided through obtaining a Lagrangian-Hamiltonian 
formalism for FODES.  
 
The philosophical idea is that a dual deterministic-probabilistic picture of general systems is 
implicit in their nature. Thus, a probability density in the space of states can be stated. In other 
words, the probabilistic picture would be implicit at any level of description where a system is 
modeled. On the other hand, the probabilistic picture would not arise necessarily from a lower level 
of description.  
 
Mathematically, once known the probability density in the space of states, the thermodynamics 
would happen through Gibbs’ equation that relates the entropy and the probability density. The 
mathematical procedure to obtain the probability density is the following. Pontryagin’s hamiltonian 
function (Pontryagin, 1986) is considered for FODES. Thus, Liouville’s equation takes place for the 
probability density in the space of states. The mathematical structure of Liouville’s equation can be 
reorganized in such a way that holds the conservation probability equation in the space of states. 
Steady states are considered for this function in order to work with equilibrium thermodynamics. In 
a scenario of equilibrium, Entropy can be deduced as a function of the energy of system.  
 
 
2. The Lagrangian-Hamiltonian approach and Liouville’s equation 
Let  the abstract variables depending on the time variable t of a FODES, with i=1,2,..n. A 
system like this can be represented as: 
 

                                                                        (1) 

 
In (1) the functions  have all the topological properties of smoothness normally considered. The 
formalism here developed starts from the Lagrangian-Hamiltonian approach provided by 
Pontryagin (1986). This approach considers an integral optimization of a function known as Action 
A(t):   
 

                                                                        (2) 

  
In (2),  is called Potential, and it represents the function to be optimized in each instant. 

Due to the dynamics of the vector  is given by (1), this dynamics is inserted in (2) by using the 
Lagrange’s multipliers  i=1,2,..n. The outcome is that a new Action must be optimized: 
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                                                   (3) 

 
In (3), . Observe from (3) that the following Lagrangian function can be defined: 

 
                                    (4) 

 
In (4) the abstract variables  and  have the conjugated canonical momenta  defined 
as (from now onwards the explicit dependence on t is avoided in order to simplify the writing): 
 

                                                                        (5) 

 
Thus, the Hamiltonian function obtained from (4) and (5) is: 
 

                                                          (6) 
 
The canonical equations are: 
 

    

 

                                                              

 
Note that Equations (7.1) and (7.2) can be obtained through Euler-Lagrange’s equations by using 
the Lagrangian function (4). Equations (7.1) and (7.2) provide the dynamics for  and for 

. In addition, by Equation (5): . 
  
Liouville´s equation for Liouville´s function, , which represents the density function in the 

space of states , provides the conservation in time of this function: 
 

                                            (8)                                                                            

 
If we take into account that in our context only self-organized systems are analyzed, and not 
systems organized from their environment, the potential V must be zero in (8). In addition, 
considering (7-1), (7-2) and (5) in Equation (8): 
 

                                          (9)                                                                        

 
 
3. The probability density and the Entropy 
Let us to demonstrate that from Liouville’s Equation (9) the fact that the square of Liouville´s 
function  is a probability density can be deduced. The first step is to use the gradient 
symbol in (9) (the dependences on time and variables are avoided now in order to facilitate the 
writing demonstration): 
 



4 

 

                                                                      (10)                                                                        

 

Where, in (10), , , , 

, and the point · means the vector product. The term , where  is the 

divergence of the vector f , is added and rested in (10):  
 

                                                         (11)                     

 
In addition, if  is the divergence of the vector F, we have that: 
 

                       (12) 

 
Substituting (12) in (11) for the term :  

 

                                                         (13)                                                                        

 
Multiplying (13) per : 
 

                                                         (14)                      

 
The result obtained is: 
 

                                                         (15)                                                                        

 
Now, the probability current vector  in the 2n dimensional space of states is defined as:  
 

                                                           (16) 
 
And the 2n dimensional space of states gradient grad as: 
 

                                                    (17) 

 
Thus, from (16) and (17), Equation (15) can be reformulated as: 
 

                                                         (18)                                                                        

 
Observe that (18) is the dynamic equation that represents the conservation of probability density 

, with a probability current vector given by . 
 
Once the probability density  is computed by solving (18), Gibbs’ Entropy S(t) can be 
evaluated as: 
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                                                   (19) 

 
In (19),  is Boltzman’s constant. However, working with density Gibbs’ Entropy  is 
more convenient: 
 

                                                   (20)  

 
 
4. The Entropy and the Temperature of equilibrium distributions 
Following Statistical Physics, the first cases to investigate are those that provide the equilibrium 
distributions of (18). However, (18) is equivalent to (9), such as it has been demonstrated in the last 
section. Moreover, working mathematically with (9) is simpler. Actually, the equilibrium Liouville’s 
equation is obtained from (9). The function obtained from this equation elevated to the square 
provides the equilibrium distribution.   
 
First of all, observe that the search of equilibrium distributions obligates to consider autonomous 
systems, i.e.,  in (1). For autonomous systems the Hamiltonian function is 
conserved in time. Let E be the constant and let it be the energy of the system. Thus, from (6) and 
taking into account (5) and the self-organized case, V=0: 
 

                                                                                (21) 
 

In order to find the equilibrium Liouville’s function, Statistical Physics states that  must be 

held. Let  be this function, thus, from (9): 
 

                                            (22)   

  
The solution of (22) together the condition (21) provides the equilibrium Liouville’s function 

. Once normalized to the unit in the space of states , equilibrium Gibbs’ Entropy 
 can be evaluated from (20): 

 
                                                   (23)  

 
From (23), thermodynamic magnitudes such as temperature  in equilibrium can be 

evaluated. It is known in Statistical Physics that  can be computed as: 
 

                                                                                      (24) 

  
 
5. Dependence on energy of equilibrium Liouville’s equation 
The case n=1 for equilibrium Liouville’s function provides from (21) and (22): 

                                                                                (25) 
 

                                                                    (26)   
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Equation (26) is a first order linear partial differential equation. Its characteristic equations are: 

                                                                    (27)   

 
In Equations (27) two of them can be chosen as independent: 
 

                                                                    (28)   

 
The solution of the system (28) in terms of two integration constants,  and  is: 
 

                                                                    (29) 

 
And the solution of (26) in terms of the two integration constants is , where G is an 
arbitrary function. Substituting the outcomes of these two constants, and seeing that  is, from 
(25), the energy: 
 
  

                                                                    (30) 
 
The conclusion from (30) is that equilibrium Liouville’s function is an arbitrary function of the 
energy of the system, being this energy computed by (25). This result suggests that the 
generalization for an arbitrary n, i.e., for Equation (22), is the same of (30), after substituting (25) 
for the n-dimensional energy given by (21): 
 

                                                                    (31) 
 
In (31), the Energy  is given by (21). The result (31) can be proved by the direct substitution 
of (21) in (22).  
 
However, a last problem must be solved. The Energy (21) is zero for the critical points of the 
dynamics. But due to  must be normalized, the integration on the space of states provides a 
discontinuity for each critical point. How to solve this mathematical problem and how to articulate 
the applications will be the subjects of other works.  
 
 
6. Conclusions 
Three results must be emphasized as conclusions of this paper. The first one is that a probabilistic 
picture can be deduced from the Lagrangian-Hamiltonian approach for FODES. There exists, thus, 
a dual deterministic-probabilistic picture for these systems. The importance of this duality is that 
both parts are related. In addition, the probabilistic part is not a consequence of the noise produced 
by the environment, but it is implicit at its mathematical nature.  
 
The second result is that the probabilistic picture, given by the solution of Louville’s equation, 
provides the way to compute Gibb’s Entropy. Then, the Entropy can be computed from the 
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differential formulation of the system. It permits to obtain other thermodynamic functions such as 
temperature.  That is, the approach presented permits to state a general thermodynamics of systems. 
 
The third result is that, for autonomous systems, both the equilibrium distribution given by 
Liouville’s equation and the consequent Entropy depend on the system energy. This amazing 
outcome is challenger in order to continue with this field of investigation.  
 
The conclusions about future applications are not here articulated because there are many problems 
for the author to be elucidated. This work is only a first step to research in the field of complexity 
focused from the Lagrangian-Hamiltonian formalism here stated. However, the fact that a 
probabilistic picture can be deduced from the differential structure of a dynamic system is actually 
important to be considered. Moreover, this way should be investigated more due to from this 
probabilistic picture a general definition of Entropy can be provided and further features about 
complexity can be provided in a future.   
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