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Abstract- Agent-based social simulation as a computational 

approach to social simulation has been largely used to explore 

social phenomena. The purpose of this paper is to describe a 

theoretical model of transm iss ion and evolution of social 

behaviors in a network of artificial societies (artificial world) 

using agent-based modeling technology. In this model, each agent 

(society) is subdivided into social behaviors where individual and 

social learning occur. The agent-agent interactions are carried 

out by their social behaviors; otherwise the agent-environment 

interactions through consumption of ecological resources by its 

social behaviors in repression and satisfaction. 

We distinguish social behaviors by their repressive capacity and 

their technical satisfaction. Preliminary results of the model 

generate several evolutions, but we will focus on the two most 

important types: firstly, evolutions where the system (all living­

agents) will end in a state of "globalization"; i.e. where one social 

behavior predominates the entire system; secondly, evolutions 

where an Ecological Hecatomb takes place during the 

globalization with the repressive social behavior. The model is 

implemented in java language; its simulation can help to 

understand the implied processes in humanity's evolution and 

their trajectories. 
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I. INTRODUCTION 

Modeling and simulation of soft systems where the human 
factor is crucial to the system behavior is a difficult and risky 
task. The models can hardly be validated, unless we have 
sufficient historical data. Even if we can prove that the model 
behavior for the past data is correct, this does not mean that it 
will be valid for the future trajectories. So, it is a common 
practice to use invalid models of soft systems (in fact, the 
authors of such models normally do not care about the model 
validity). This does not mean that the model, even if it is 
invalid, cannot provide relevant and interesting information. 
What we should take into account is that the numeric results 
can be false. The model user must be aware of this, and rather 

look for behavioral properties that repeat for different data sets 
and model parameters, using his experience in intuition [13]. 

In previous works ([11], [12]) PIa-Lopez has built a model 
of social evolution from a General Theory of Learning [12]. In 
his model, the environment in where the subsystems (societies) 
evolve is one-dimensional. 

This model was adapted by Nemiche and PIa-Lopez to 
simulate the duality between orient and occident; introducing a 
differentiation between individualist and gregarious social 
behaviors ([8]-[10]). In this work we propose a new version of 
the model reformulated in terms of agent-based technology. 
The environment in this version is two-dimensional and the 
agents are mobile. 

The agent-based simulation has demonstrated that it is a 
tremendous tool for modeling complex systems and especially 
social systems ([1], [3] - [5]). In this type of simulation the 
global behavior of a system is the result of individual behaviors 
and its interactions. 

Certainly, one of the key points of the multi-agent 
simulation is the concept of emergence. This implies that the 
emergent phenomena are macroscopic models resulting from 
decentralized interactions of simple individual components [6]. 
In social science the idea of emergence takes a supplementary 
dimension due to the importance of complexity [7]. 

II. THE MODEL 

Our model consists of a set of N autonomous and adaptive 
agents/societies that consume resources in a common 
environment by satisfaction and repression to achieve their 
objectives. 

Each agent A represents an artificial society; its state is 
defined by three variables [9]: 

1. The dimension mA of the agent mA E{J,2, . . .  ,mmax} : in 
the instant t=O all the agents start with the same 
dimension 1 (primitive society); this dimension 
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increases with time under certain conditions until a 
maximum value mmax in an autonomous way for each 
agent. With the increase of the dimension we simulate 
the technological development (progress) for each 
agent. 

2. A vector V of mA binary components (presence or 
absence of social behavior code) V=(VmA.f, . . .  , V" Va) 
represents an available social behavior for A. The 
number of social behaviors available for the agent A is 
2mA. 

3. P'A(U) the weight which specifies the relative 
importance of the social behavior V of the agent A in 
the instant t; this weight is expressed by a function of 
probability (P'A(V)) which is updated in each step. 

Suppose that at time t the dimension of the agent A is 4; in 
this case the social behaviors available for A are: (0,0,0,0), 
m��� m�L� m�L� mL�� mL�� mLL� 
(0,1,1,1), (1,0,0,0), (1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0), 
(1,1,01), (1,1,1,0), (1,1,1,1) (binary representation (base 2)). In 
the simulation interface we represent the social behaviors with 
its hexadecimal form (base 16); i.e. 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 
B, C, D, E, F (example ((1,1,1,lh=(F)'6)' In each instant t, 
each social behavior V of an agent A calculates its probability 

CiVP'A(V} =1). We say that a social behavior V predominate in 
the agent A at the instant t if P'A(V}� 0. 5. 

A. The Environment Sub-Model 
The environment in which the agents evolve is a discrete­

space in the form of a two-dimensional grid of cells each 
having variable and limited quantity of resources. 

X EN* and Y EN* are respectively the abscissa and 
ordinate. Each cell is located by its coordinates (x, y) with 
x E [0,X-1} andYE [0,Y-1}. 

In this model we use the Euclidean distance; the origin of 
the grid is located down left. 

Each cell is characterized by its initial capacity of 
resources, its maximal capacity, its rate of regeneration, and a 
state variable which represents the actual quantity of available 
resources. 

More formally, we use the following notations: 

XO(x,y)ER+: the initial capacity ( t=O) of the cell (x,y). 

KmaxER+ : maximal capacity of the cell (x,y). 

p EJJ,1 [: the rate of regeneration of the cell (x,y). 

K' (x,y) ER\ with K' (x,y):; Kmax :  the quantity of resources 
at the instant t. 

When an agent occupies the cell (x,y) (in this model a cell 
(x,y) only can be occupied by one agent at the instant t), 
the value K(x,y) is updated as: 

K'+'(x,y)=min[K'(x,y)+p.K'(x,y)-(CS+CR),KmaJ 

where CS is the consumption of the resources in 
satisfaction by the agent A. 

CR is the consumption of the resources in repression by 
the agentA. 

The formulas of CS and CR are presented in Section K. 
When the cell is free, the value of K(x,y) increases under 

the following formula: 

K'+'(x,y) =min[K' (x,y) +pK' (x,y), KmaJ 

The initial resource capacity of the cells are randomly 
distributed between two values Kmin and Kmax (in this version 
Kmin and Kmax are constant parameters of the model for all the 
cells). 

B. Static Social Behavior Proprieties 
The social behaviors in this model are characterized by 

their initial repressive capacity and their technical possibility of 
satisfaction. The initial repressive capacity of a social behavior 
depends on its might J.1(V) and its ferocity v(V). We want the 
initial repressive capacity of a social behavior to be null when 
its might or its ferocity is null. The simple formula is the 
product [9]; i.e. RC(U)= J.1(U). v(U) 

Which guarantees that RC(V)=0 if J.1(V) =0 or v(V)=O 

1) The might: we want the might of a social behavior U of 
an agent A to increase with the dimension of U and with the 
included attributes; in a way that a social behavior with a great 
dimension possessus a great might. Taking into consideration 
the binary representation of social behavior, the simple 

function that satisfies these conditions is the decimal 
representation of the social behavior [9] ; i.e. J.1(V) = 'i,ii Vi 

2) The ferocity: we assume that the ferocity decreases in 
the social behaviors that are more advanced (social behavior V 
with Vmmax-,=l), and increases in the social behaviors that are 
less advanced (Ummax-'=O). 

The formula of the ferocity in this model is: 

2."2iU 
v(U) = 

1- ( L.. i I _1)2 
2111=, -1 

We want the initial repressive capacity of the social 
behavior (0,1, . . .  ,1,1) to be equal to 1. For this we have to 
divide the might by 2mmax-'_1. The new formula of the might 
is: max-i 

� )iVi 
(V) - .....!i=-O __ 

f.l - 2111,=-1 
-1 

3) Technical possibility of satisfaction: we hope that the 

satisfaction increases with the technical progress between the 
values 0 and I. Thus, the simple formula is: 

1 m,m"i 
Jr(U)=- IUi 

mmax ;=0 



U /1(U) v(U) RqU) n(u) 
U=O ° 0,3 ° ° 
U=I 0,143 0,461 0,066 0,25 

U=2 0,286 0,61 0,174 0,25 

U-3 0,429 0,741 0,318 0,5 

U-4 0,571 0,85 0,486 0,25 

U=5 0,714 0,932 0,665 0,5 

U=6 0,857 0,983 0,842 0,5 

U=7 I I 1 0,75 

U=8 1,143 0,982 1,122 0,25 

U-9 1,286 0,929 1,194 0,5 

U-A 1,429 0,84 1,2 0,5 

U=B 1,571 0,719 1,129 0,75 

U=C 1,714 0,568 0,974 0,5 

U=D 1,857 0,394 0,732 0,75 

U=E 2 0,202 0,404 0,75 

U-F 2,143 ° ° 1 

Table I 
The values of the static social behavior proprieties with m=4 

C. Multi-agent Learning 
We use the probabilistic learning model build by PIa-Lopez 

[12]. This model is based on the law of positive and negative 
reinforcement which permit the agents to update their proper 
knowledge bases by adding or deleting information from the 
perception of positive and negative effects of their actions. 
The function of the fulfillment of the goal PGA(U) of a social 
behavior U of the agent A will depend on the technical 

possibility of satisfaction 7[(U) and a factor (l-O'A(U)) 
determined by the social context [9]: 

PG A (U) = 1l'(U)(I- (J A (U») 

O'A(U) is the suffered social repression of the social behavior U 
in the agent A. 

The probability PA(U) of the social behavior U of an agent 
A increases when the goal is accomplished; in way that, a 
value of PGA(U) superior to a reference value PRA 
determines an increase of the memory accumulator function 
fA(U) : 

{fAI+1(U) = max {tAl (U) + Ai (PG�(U) - PR�)P/ (U),O} 
fAO(U)= KAI si U:o::2"'4 - 1  yfAo(U)=OsiU>2"'4_ 1 

P I(U)-
fAI(u) is calculatedonlyifBAI:;<:o A - LfAI (V) = BAI 

v 

PR� = LPG�(V)p�(V) 
v 

KAI is the capacity of resource of the cell occupied by the 
agentA. 

In this formula of the memory accumulator functionfA(u), 
the learning of a social behavior depends only on the 
individual learning without considering the social learning. 

D. Technological Progress 
We simulate the technological development (progress) of 

an agent A with the increase of its dimension rnA. This increase 
has two causes that react additionally [9]: 

l. The probability of the increasing dimension increases 
linearly with the accumulated memory of the agent A; 

expressed by BA in the way that if BA� prg then the 
dimension of the agent A increases with one unity 
(prg is parameter of the model). 

2. The dimension may increase by technological 
diffusion; which we express by the accumulation of 
information from other agents with dimensions 
superior to the dimension of the agent A. 

Thus, the dimension of an agent A increases when the 
following condition is accomplished: 

/3+ IpAI(U)+ 
BAI �l 

U>2",4-1 prg 
Where fJis a uniform random variable in the interval ]0,1[. 

E. Reproduction, death of agents 
In this model an agent A may die by two causes [9]: 

l. By dissatisfaction: when BA=O ; i.e. fA(U)=O for each 
U. An agent can arrive to this state when none of its 
social behaviors leads to the complement of the goal. 

2. By natural death: this happens with high probability 
when the influence of the learning of the agent A on 
its behavior is of less importance. This occurs when 
BA approaches a maximum value called tanatos 
(parameter of the model). 

The reproduction of the agents is produced by two ways 
[9]: 

1. By relay: when an agent dies naturally, the relay is 
immediately produced with the appearance of a new 
agent "neophytes" which occupies the cell freed due 
to a natural death. If we introduce a random variable 

aj E ]0, 1 [, we can express the condition of the relay 
by: B I 

a1 + A � 1 tanatos 
2. By recuperation: when a new neophyte agent occupies 

a cell freed due to a dissatisfaction death. Among 
these cells freed, we would facilitate the recuperation 
of the cells previously predominated by less evolved 
social behaviors. If we introduce a random variable 

a2E ]0, 1 [, we can express the condition of the 
recuperation by: 

a2 + La(U)p, (U) � 1 
U 



When the recuperation or the relay is produced, the 
memory accumulator function of the new neophyte agent is 
initialized by: f�(U) = K� \t U � 2mB - 1  

f�(U) = 0 
Where Ks is the resource of the cell occupied by the agent 

B, 
ms is the dimension of the new neophyte agent B. 

In the case of the relay, the dimension ms of the neophyte 
agent is equal to that of the dead agent. Nevertheless, in case 
of the recuperation, dimension ms of the neophyte agent is 
equal to the maximal dimension of its nearest neighbors. 

F. Agents' social Impact 
The social impact (influence) of an agent A on another 

agent B is expressed by the following formula: 

IMP(A,B)= LUPA(U)impact(U,d(A,B») 
Where d(A,B) is Euclidean distance between agent A and 

agent de B, 
impact(U,d(A,B)) is the social impact of the social 

behavior U at the distance d(A,B) [11: 

d -d 
impact(U,  d) = mimp(U) + max( O,-Jl-- )(Mimp(U) -mimp(U») 

d 

d = min(I,JI(U»)d ; 
JI max 

mimp(U) = max[o, JI(U) 
�

I
I
1 ; 

Jlmax 

Mimp(U) = 
2 -mimp(U) 
min(1,JI(U)) 

JI 

dmax is the maximal distance between two cells in the grid. 

G. Social neighboring 
The social neighbors of an agent A, according to the model 

are the set VA of agents that socially impact (affect) the agent 
A: 

VA = {Agent B / IMP(B, A) 'i= ° and B'i= A} 

H. Communication between agents 
The formulation of the multi-agent probabilistic learning 

model considers only the individual learning; i.e. the agents 
learn only from their own experiences. So that the agents can 
also learn from the experiences of their social neighbors 
(social learning), we have replaced the individual learning rate 
P A(U) of a social behavior U of an agent A by the learning rate 
PLA(U) [9] expressed by: 

PLA(U) = PA(U)+ REC A /", EMBPB (U)impact(U, d(B, A»)) 'LBEVA 
where 

REC)'" EMBPB(U)impact(U,d(B,A»)) \LBEVA 
is the social learning rate, 

PA(U) is the individual learning rate. 
RECA, EMA are respectively the reception 

capacity and the emission capacity of an agent A. 

RECA = LvP(V)rec(V) 

EM A = Lv P(V)em(V) 
em(V) = rec(V) = JI(V)/2 

The new formulation of the learning that integrates the 
individual and social learning is: 

{fA'+l(U) = max {rAt (U) + A, (PG�(U) - PR�)PL;(U),O} 
f/(U)=KA' si U<S,2mA -1 yf/(U)=OsiU>2mA-I 

'(U) - fA' (U) is calculated only if BA' :;t: 0 PA -
LfA'(V) = BA' 

V 

1. Resignation 
In our model, the function of the fulfillment of the goal 

PGA(U) of a social behavior U is compared with the local 
reference PRA(U) expressed by the pondered 
average: PR� = LPG�(V)p�(V) 

v 

We have modified the reference function PRA(U) of the 
social behavior U in the agent A to be a reference that 
considers the social neighboring of the agent A (for that, we 
replace the learning individual rate PA(U) by the learning rate 
PLA(U) : 

LPG�(V)PEA(V) 
PGM' = -'-v----,=-___ _ A LPEA(V) 

v 

In the practice, the resignation is produce with delay Tr. 
Thus, this we subtract from the function of the fulfillment of 
the goal PGA the value PR that evolves linearly toward the 
average satisfaction PGM 

PR�+tll (U) = PR� (U) + �t (PGM� - PR�) irA 

We want to model a situation where the resignation is 
slower when the ferocity is greater, for this we consider: 

Tr, = ill.Kr( � p; (U).v(U) + 1 J 
Kr is a constant parameter. 

J. Repressive Adaptation 
Remember that the function of the fulfillment of the goal 

of a social behavior U in the agent A is: 

PG A (U) = Jr(U)(I- a A (U») 



This function increases with the increase of the technical 
possibility of satisfaction n(U) and decreases with the increase 

of the suffered social repression (crA(U)) of the social behavior 
U. 

Note that VA + = VA u {Aj, is the set of the social 
neighboring of the agent A including the agent itself. In this 
model each social behavior U in the agent A represses the 
other social behaviors different than itself in the set VA +. So 
that the agents can survive they must adapt to the suffered 
social repression, by producing in return a social repression 
(repressive capacity). The suffered social repression of a social 
behavior U of an agent A depends on the weight (probability) 
of the social behaviors V different to U in the agents of the set 
VA +; of the social impact of the agents of the set VA + on the 
agent A ; and repressive capacity of these social behaviors [9] : 

O'A(U) = � I I (PB(V))2stsB(V)impact(V,d(B, A)) 
S V",U BEV,+ 

Where StSB(V) is the repressive capacity of the social 
behavior V of the agent B, 

S is number of the living agents. 

The repressive capacity of a social behavior U of the agent 
A evolve from the initial repressive capacity RC(U) to the 
suffered repression by the social behavior U in the agent A 
with a delay TA : 

sts�+"" (U) = sts� (U) + M (O'� (U) - sts� (U)) 
TA 

sts� (U) = RC(U) 

We want to model a more rapid adaptation to the suffered 
repression, when the agent has more advanced technology (the 
most advanced technology is reflected by high values of the 
might): 

v 

Where Ilmax is the maximal might 
(Ilmax�Il(l,l, ... ,l,l) ), and Ka is a parameter of the model. 

K. Consumption of resources 
The interactions of the agents with their environment 

through its social behaviors affect the technical possibility of 
satisfaction: k' 7r�(U) = 7r(U)._A-

Kmax 
So, the new formulation of the function of fulfillment of 

the goal is: PG�(U) = 7r�(U)(l- (J�(U)) 

The agents consume the resources by satisfaction and 
repression. 

The quantity consumed by satisfaction is 
CSA1='iU PAI(U)7fAI(U), and the quantity consumed by 

repression is CRAI='iu PAI(U)StsAI(U). 

Some generated social evolutions of the model end in the 
Ecological Hecatomb state; i.e. the end of the social evolution 
due to the exhaustion of the resources (death of all agents). 

III. PRELIMINARY RESULTS 

With our probabilistic model we have obtained several 
types of social evolutions. In this work, we focused only on the 
following social evolutions: 

• Evolutions where the system (all the agents) ends 
predominated by the same repressive social behavior 
U=(O,1, . . .  , 1,1); i.e. repressive globalization state. The 
perpetuity of the capitalist globalization according to 
Fukuyama [2] can be a possible interpretation of this 
result (see figure 1 in the annex). 

• Evolutions where the repressive globalization is 
overcome by another free scientific globalization 
U=(J,1, . . .  , 1,1), characterized by a great satisfaction 
and without initial repressive capacity (see figure 2 in 
the annex). 

• Evolutions where the system ends with Ecological 
Hecatomb; i.e. death of all the agents due to exhaustion 
of resources (see figure 2 in the annex). 

The values of the initial parameters used in these 
simulations are: ka=70; prg= 10000; LJT= 100; 
Tanatos=20000; Tmax =20000; Kmax=30; p= 0. 03; X=10; 
Y=1O, the number of agents is 90. 

IV. CONCLUSIONS, DISCUSSIONS ET PERSPECTIVES 

The presented simulation is a first stage of research that 
should be continued with sensitivity analysis. Perhaps similar 
models can be developed using the System Dynamics 
approach, with a more global view. But, by using System 
Dynamics we will not be able to see the agents' movements. 

The simulation of this model can help to understand: 

• The process implied in the social evolution of humanity 
and its possible trajectories. 

• The conditions that favor the perpetuity of the 
repressive globalization (capitalist globalization). 

• The conditions that favor the possibility of overcoming 
the repressive globalization by another free scientific 
globalization; based on the satisfaction instead of the 
repression. 

• The conditions that favor the Ecological Hecatomb. 
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ANNEX 

Figure I. Example of an evolution that ends with the perpetuity of repressive globalization (U=7) 



Figure 2. Example of an evolution that ends with a free scientific globalization (U=F) 

Fig. 3 Example of an evolution that ends with Ecological Hecatomb (Mort=Dead) 


