UMONS

Université de Mons

Optimizing Performance of Batch of applications on
Cloud Servers exploiting Multiple GPUs

Sébastien Frémal, Michel Bagein, Pierre Manneback
firstname.name@umons.ac.be
2012 International Conference on Complex Systems
Palais des Roses Hotel — Agadir, Morocco
November 5-6, 2012

FEDER

SRS OUMP % 2 Em 4

a Onle DIVILOFPIMINT RLGIONAL
ASENT DANS VOTRE AVEN)

Part 1 : GPU General Presentation

CPU & GPU: architectural differences

CPU : from 1 to 16 cores (tens of threads)
GPU : from 32 to 800 cores (millions of threads)

I\

ALU ALU

SP : Streaming
Processor

Control

ALU ALU

SM : Streaming
Multiprocessor

CPU GPU

CPU : asynchronous code execution on cores
GPU : synchronous code execution on SPs of an SM.

Device memories

Memory Latency (clock
cycles)

Register

Local

Shared

Constant

Texture

Global

On chip — Thread
Scope

Off chip - Thread
scope

On chip — Block
scope

Off chip — Read only

Off chip - Read only

Off chip — Main
memory

8192 x 4 bytes

Undetermined 400 to 600
16 kB 4

8 kB Min. 1

1 kB / core 4

Can reach 4 GB 400 to 600

Steps to execute a kernel on a
GPU

1. Device memory allocation and
data transfer from the host
memory to the device memory.

Host
™
©,

.. 2. Kernel launching.
Device 3. Data rea-o!lng and processing.
Memory 4. Data writing.

5. Results transfer from the device

memory to the host memory

Device

®

Some constraints of GPUs

- Data transfers from a memory to another : needs to get enough
treatments to compensate lantecy due to transfer times

- Different applications are not distributed on all available GPUs
but are all assigned at the same default GPU

-The number of coexisting CUDA contexts (GPU processus) is
limited (+- 30 on a NVIDIA GTX 580)

- CUDA contexts initialization takes some time (400 ms for a
NVIDIA GTX 580)

Programming languages : CUDA &
OpenCL

e Cfor CUDA:
 CUDA = parallel computing architecture developed
by Nvidia
* Proprietary (NVIDIA)
 cudaMalloc, cudaMemcpy ...
* OpenCL:
 OpenCL = open, royalty-free standard for cross-
platform, parallel programming
 Open (NVIDIA, ATI)
* clCreateBuffer, clCreateKernel, clSetKernelArg ...

Part 2 : GPUs Management

Efficient use of a set of graphic
processors

Default behavior of CUDA applications :

e Use the default GPU (GPU 0)

* The system freezes when there are too much CUDA contexts
* Initialization of a CUDA context takes some time

Goals of our work :

 CUDA context mutualization : sharing CUDA contexts between
multiple applications avoids freezing the system when there is
a lot of applications and avoids the initialization time of CUDA
contexts

e Using all available GPUs : distributing the applications so they
use in a transparent way all available GPUs to improve
performances

A first system distributing applications on GPUs

of a computer

Application 1 Application 2 Application 3
/ GPU Request \ / GPU Request \ / GPU Request \
k\ GPU Calls j \ GPU Calls J \\ GPU Calls /

‘ Application 4 Application 5
/ GPU Request \ / GPU Request \ / GPU Request \
_ opucals J ||\ cepPucals J ||\ crucals /

GPU Assignment Manager

GPU Manager 1

' GPU Calls
Reception
Memory RCUPA
Manager| |~untime
API

GPU Calls
Reception
Memory RCUPA
Manager| |Runtime
API

GPU Manager M

GPU Calls
Reception
Memory RCUDA
Manager| |Runtime
API

NVIDIA GPU 1

NVIDIA GPU M

» Assignment Manager :
distributing applications on
GPUs

 GPU Calls : interface
sending requests for GPU
functions to GPU Manager
thanks to message queues
« GPU Manager : receiving
requests from applications
and executing them on
GPUs. Each one have one
thread managine one
CUDA context = contexts
mutualization

« Memory Manager :
manages GPU memory
and a memory zone shared
with applications

Results with the first system

N
(92

N
(@)

Makespan of applications batch (s)

o

10 Apps 20 Apps 30 Apps 40 Apps 50 Apps
Number of applications per batch

W CUDA-1GPU ECUDA-3GPUs © Oursystem-1GPU = Oursystem -3 GPUs

GVirtus : a system allowing an instanced

virtual machine to access GPGPUs
r: :‘1(\ AREEEER,

o |
;A"p"m"i 5 :) Similar to our system but gets some differences :
FrontEnd 000 « Communications are available through TCP and
— /| allow the server to communicate with an
application in a virtual machine.
— ——/| + The frontend library uses the CUDA Runtime API
N~ S function’s interfaces. Applications don’t need a lot
rhypervior | of modifications to use GVirtus.
SLL \ ¢ GVirtus uses one GPU (the default GPU).
BackEnd Unot-harnel * There is no contexts mutualization. For each
——— appllcatlon,_ t_h_e SEerver spawns a processus. This
REnl'lJtll)r:e processus initializes and manages a CUDA
h— e context. It receives requests of the application it's
\ [e)) bound to and executes them on the GPU.
nVidia GPU Device

A GPGPU transparent virtualization component for high performance
computing clouds, G. Giunta et Al.

Results with GVirtus

-
o

=
N

=
o

Makespan of applications batch (s)

10 Apps 20 Apps
Number of applications per batch

w CUDA-1GPU - GVirtuS -1 GPU

GVirtus + : improvements of GVirtus

 We brought two modifications we
experienced with our system to GVirtus to
improve its performances :

— CUDA contexts mutualization

— Using all available GPUs

Results with GVirtus +

N
U

21

N
(@)

=
U

=
o

(92}

Makespan of applications batch (s)

o

10 Apps 20 Apps 30 Apps 40 Apps 50 Apps
Number of applications per batch

W CUDA-1GPU = CUDA-3GPUs = GVirtuS+-1GPU = GVirtuS+-3 GPUs

Results with GVirtus + : virtualized
applications

36

29

Makespan of applications batch (s)
N
o

10 Apps 20 Apps 30 Apps 40 Apps 50 Apps

Number of applications per batch
m CUDA-1GPU w CUDA -3 GPUs

.. GVirtus + Virtualisé - 1 GPU - GVirtuS + Virtualisé - 3 GPUs

Comparison of systems on 3 GPUs

N
92}

= 23
i -

(S}

® 20

o]

(7]

| =

o

s 15

S

-3

& 10

o

o

c

a 5

(7]

Q

<

(C

2 0

10 Apps 20 Apps 30 Apps 40 Apps 50 Apps
Number of applications per batch
W CUDA - 3 GPUs & Our system - 3 GPUs
- GVirtuS + - 3 GPUs - GVirtuS + Virtualisé - 3 GPUs

Conclusions & Perspectives

* Applications benefit from the initialized contexts and the
mutualization allows executing more applications.

 Applications are properly distributed on available GPUs.

e Communications will be improved to make global execution
faster. This is especially important when applications are
virtualized.

e A memory manager will be implemented to remove memory
limitation.

e The use of CUDA Stream will be experimented to overlap
transfer with kernel execution

